
PIPELINES && SERVERLESS && AUTOMATION, OH MY!

AN INTRO TO THE DEV SIDE OF SECURITY

Cassandra Young

JonnCallahan

Evan Perotti



APIS,SERVERLESS& MICROSERVICES



CASSANDRA YOUNG 

(AKA MUTEKI)

Á Senior Scientist (R&I - Cloud Security) 
@ Security Risk Advisors

Á Grad Student in Computer Science
@ University of Pennsylvania

Á Blue Team Village Organizer

Á Lives for international travel, scuba diving, 
woodworking, jigsaw puzzles and baking

Cassandra Young (she/her)

Twitter: @muteki_rtw

GitHub: github.com/muteki-apps



API DEFINITION

Á TL;DR: provides standardized, programmatic method of interaction between 

backend logic / software and external services

Á Layer ofabstractionto simplifyinteraction with a service

Á Common Functionality: GET, PUT, POST, DELETE

Á Implementation on the backend varies widely depending on the service



API USE

Á Connect to APIs w/ HTTP requests, using any

programming language

Á Examples: request headers w/ auth, JSON body, 

Request & Response Headers

Á Anatomy of a REST API request:

Á Endpoint ðURL specifying the data youõre 

interacting with

Á Methodðhowyouõreinteractingwith it

Á Headers ðmetadata include with request & 

response, can include auth

Á Data/Payload ðif creating/updating, what info to 

add/change (usually JSON formatted)



API SECURITY CONSIDERATIONS

Risk

Á String injection

Á Unauthorized data access (ex. IDOR)

Á D/DoS, Manin the Middle attacks, complex attacks

Mitigation

Á Input validation

Á Authentication/authorization, data access controls

Á Web ApplicationFirewall, TLS, rate limiting

Resources:

ShellContalk @ 14:30onAPI Security!

API Hacking talk: https://www.youtube.com/watch?v=qqmyAxfGV9c

Use Postman to poke at APIs: https://www.postman.com/

https://shellcon.io/talks/2021/api-security/
https://www.youtube.com/watch?v=qqmyAxfGV9c
https://www.postman.com/


SERVERLESS

Á Execution model abstracting away infrastructure

Á Code-focused, obfuscating OS & dependencies

Á Simplified development process

Á Event-driven, primarily accessed via APIs

Á Stateless, no persistent storage



SERVERLESS FUNCTION EXAMPLE

Á Supported library installs done for the developer

Á JSON-formatted event is the input to the function

Á Context object provides info about the runtime env 

and other metadata

Á Program logic up to developer

Á Function will return JSON-formatted response to 

caller



SERVERLESS FUNCTION 
EXAMPLE

Á Invoking one AWS Lambda 

from another via internal API

Á AWS boto3 library helps 

interface with the API

Á Other Lambda must have 

policy that allows it to be 

invoked



SERVERLESS FUNCTION EXAMPLE: IAM PERMISSIONS ON LAMBDA

Á Example of scoped policy

Á Restricting AWS Lambda 

permissions reduces attack 

surface

Á IAM/permissionsis the 

serverless security perimeter!



SERVERLESS FUNCTION

COMPROMISE EXAMPLE

String injection

Access to Environment

Enumerate Lambdaõs Roles/Policies

Privilege Escalation / Resource Access

IAM / Permissions = Security Perimeter

Image credit: https://research.cs.wisc.edu/mist/SoftwareSecurityCourse/Chapters/3_8_3-Code-Injections.pdf



MICROSERVICES

Á Microservices Architecture is a 

design pattern 

Á Collection of loosely-coupled 

components

Á Commonly implemented using 

containers or serverless 

functions

Á APIsconnect components

Á Development and upgrade 

focus shifted to component 

level



PIPELINES



JONN CALLAHAN (ATTICUSS)

Á Lead Scientist / Security Risk Advisors

Á Python is great, as is Golang

Á Distributed computing is fascinating

Á Metalhead \m/







TYPICAL FLOW CONTROLS

Á Implemented against pull requests

Á Manual approvement gateways

Á Automated tests

Á Branch protections

Á Limits or entirely blocks ability to push directly to sensitive branches

Á Limit the files that can be modified by a pull requests

Á Pipeline protections

Á Limit who can modify the pipeline configuration

Á Limit who can modify automated test code





CONCEPTUALLY

Á Covers the operational gap between development and deployment

Á Uses automation to reduce friction

Á Takes freshly written code and moves it through higher environments until its released in production

Á git branching and pull requests


