PIPELINES && SERVERLESS && AUTOMATION, OH MY!

AN INTRO TO THE DEYV SIDE OF SECURITY

Cassandra Young
Jonn Callahan
Evan Perotti

APIS, SERVERLESS & MICROSERVICES

CASSANDRA YOUNG

(AKA MUTEKI)

= Senior Scientist (R&l - Cloud Security)
@ Security Risk Advisors

= Grad Student in Computer Science
@ University of Pennsylvania

= Blue Team Village Organizer

= Lives for international travel, scuba diving,
woodworking, jigsaw puzzles and baking

Cassandra Young (she/her)
Twitter: @muteki_rtw

GitHub: github.com/muteki-apps

APl DEFINITION

= TL;DR: provides standardized, programmatic method of interaction between
backend logic / software and external services

= Layer of abstraction to simplify interaction with a service

= Common Functionality: GET, PUT, POST, DELETE

= |mplementation on the backend varies widely depending on the service

Random Plugin

A

Web App

HTTPIS request

Mobile App

API

Database

Internal Infrastructure/Application

Internal
Service

internal API

Internal
Service

A\ ON =

= Connect to APIs w/ HTTP requests, using any
programming language

= Examples: request headers w/ auth,]SON body,
Request & Response Headers

= Anatomy of a REST API request:

= Endpoint — URL specifying the data you're
interacting with

= Method — how you're interacting with it

" Headers — metadata include with request &
response, can include auth

= Data/Payload — if creating/updating, what info to
add/change (usually JSON formatted)

AP| SECURITY CONSIDERATIONS

Risk Mitigation
= String injection = |nput validation
= Unauthorized data access (ex. IDOR) = Authentication/authorization, data access controls
= D/DoS,Man in the Middle attacks, complex attacks = Web Application Firewall, TLS, rate limiting
Resources:

ShellCon talk @ 14:30 on API Security!
API Hacking talk: https://www.youtube.com/watch?v=gamyAxfGV9c
Use Postman to poke at APIs: https://www.postman.com/

https://shellcon.io/talks/2021/api-security/
https://www.youtube.com/watch?v=qqmyAxfGV9c
https://www.postman.com/

SERVERLESS

" Execution model abstracting away infrastructure
= Code-focused, obfuscating OS & dependencies
= Simplified development process

= Event-driven, primarily accessed via APls

= Stateless, no persistent storage

MicroVM

API

Function code

AWS Infrastructure

SERVERLESS FUNCTION EXAMPLE

= Supported library installs done for the developer
= JSON-formatted event is the input to the function

= Context object provides info about the runtime env
and other metadata

" Program logic up to developer

= Function will return JSON-formatted response to
if result: caller

print(result)

if "admin" in event.ke

if event["admin™].lower() == "initialize_all™:

SERVERLESS FUNCTION def send message(msg, dest lambda):
EXAMPLE : : . 1
client = boto3.client(lambda’)

response = client.invoke(
FunctionName=dest lambda,

i el ot 0 (Lot InvocationType="'RequestResponse’,
from another via internal API

AWVS boto3 library helps
interface with the API Payl:::ad=j son.d ump's (msg) s

Other Lambda must have
policy that allows it to be
invoked

LogType="Tail ",

print(json.load(response| "Payload’]))

SERVERLESS FUNCTION EXAMPLE: IAM PERMISSIONS ON LAMBDA

"Version": "2@

"Statement": EX&mP|e of scoped PO“CY

Restricting AWS Lambda
permissions reduces attack
surface

)escribeTimeTolLive",
|AM/permissions is the

serverless security perimeter!

lescribeReservedCapacity*®",

;table/ta_node_1_db",

1table/ta_directory_db"

comp = input('\nYour computation? =>') String injection
if not comp:

print ("No input")
else:

print ("Result =", eval(comp))

Access to Environment

The (Python 3) input function reads a line from standard input. The eval function performs the
evaluation of the expression provided. Given that eval evaluates the input as a Python expression, it can
also calculate values if you prefer. For example, if the input 1s 3@ * 12 + 5 then it computes the value
and outputs: Result = 365.

However, Python expressions can do a lot of things, for example, consider this:

Enumerate Lambda’s Roles/Policies

__import__('os').system('rm -rf /')

Privilege Escalation / Resource Access

SERVERLESS FUNCTION
COM PROM ISE EXAM PLE |AM / Permissions = Security Perimeter

Image credit: https://research.cs.wisc.edu/mist/SoftwareSecurityCourse/Chapters/3_8_3-Code-Injections.pdf

MICROSERVICES

Microservices Architecture is a
design pattern

Collection of loosely-coupled
components

Commonly implemented using
containers or serverless
functions

APIs connect components

Development and upgrade
focus shifted to component
level

Monolithic
Architecture

User Interface

Application Logic

Data Interface

Microservices
Architecture

User Interface

Microservice

Microservice

M

Database

Database

croserv\

Microservice

Microservice

|

\i
>

Database

Database

PIPELINES

JONN CALLAHAN (ATTICUSS)

m |ead Scientist / Security Risk Advisors
® Python is great, as is Golang

m Distributed computing is fascinating

m Metalhead \m/

ovm THERE

Branching strategy:

develop - includes latest features / fixes

vl.x.X - created in preparation of release to UAT environment

release - the current state of the UAT environment Merge requests into the develop,

i K release and master branches must
master - the curent state of the production environment Eass tests, code review and QA
efore being merged.

Feature Branches Release Branches UAT Production
EX-001 EX-002 EX-003 EX-004 EX-005 Ex-006 develop 4 g g v1.0.1 vi.1.p release master
Release branches should be
naserNlistng):Heleenant o o ot B A e
https://semve'r.ﬂrg to Production environment

Ta

g:
BEE ges release/v1.0.0

Merges into the master branch
should include a tag in the
format:
release/vl.x.x

:

OO0~

Branches should be named
after the corresponding
issue number in Jira

ABCDE

Critical bug fixes can be
released without including
entire develop branch

y Y Y

: i Tag:
GESCES = > - @ T release/v1.0.1

Tag:
| ABCDEF ABCDEF ABCDEF release/vi.1.0

Merges into the develop Merges into the release
branch will be auto deployed branch will be auto deployed
to DEV environment to UAT environment

Credit: Coding Garden (YT channel)

TYPICAL FLOW CONTROLS

= |mplemented against pull requests
= Manual approvement gateways
= Automated tests
= Branch protections
= Limits or entirely blocks ability to push directly to sensitive branches
® Limit the files that can be modified by a pull requests
= Pipeline protections
= Limit who can modify the pipeline configuration

= Limit who can modify automated test code

o0
dhh

Developer

- qgit checkout dev

- git checkout -b v1.0

PR ex-001 into release

Complete pull request

Main Re

pository Tooling Repository

Run automated tooling check

o0
dhh

Technical
Lead

Approve pull request

Deploy code

Azure R

Notify user of pipeline execution results

ipelines

CONCEPTUALLY

m Covers the operational gap between development and deployment
= Uses automation to reduce friction
= Takes freshly written code and moves it through higher environments until its released in production

= git branching and pull requests e

a0

" Bu“dkite GitHu Actions

Azure
DevOps

Git repository

B s

git clone

Pipeline
Worker

Account A

sam deploy——p

Amazon
RDS

Amazon
S3 CloudFront

Application
Users

Amazon
EC2

Account B

CONCRETELY (MODERN VARIANTY)

= Utilize configuration files for controlling behavior (usually YAML)
= Trigger on various modifications to a git repo, such as a push or new pull request
® Pipeline triggers contain n jobs for doing Things™, e.g.:
® Deploy to production environment
® Each job runs inside a container (sequential or parallel)
m Each job contains n discrete tasks/steps/etc, e.g.:
= sam deploy
= Containers are pretty ubiquitous at this point

= Allows for isolation and flexibility

FOR THOSE PLAYING ALONG AT HOME

m https://github.com/atticuss/ChefConnect

® Yes, the code is horrible — was my first Go app and I've learned a lot since then

m Github Actions are configured via /.github/workflows/foo.yaml

I’ master ~ ChefConnect / .github / workflows / BuildAndDeploy.yaml

& Atticuss remove deps that no longer exist

#

£a 1 contributor

https://github.com/atticuss/ChefConnect

action trigger via whitespace removal Build and Deploy #75

() Summary
K Deploy to Dev

succeeded 15 seconds ago in 3m

Deploy to Dev

(*) Deploy to Prod

o
o
o
@
o
Q
©
Qs

o 0

75 lines (65 sloc) 2.66 KB

name: Build and Deploy

on.

push:

branches:
- dev

- prod

jobs:

dev-deploy:

name: Deploy to Dev

runs-on: ubuntu-latest
if: github.ref == 'refs/heads/dev’
steps:

- name: Source checkout

actions/checkout@master

name: Setup Golang env
uses: actions/setup-gof@vl
with:

go-version: "1.14.4"

name: Setup Python
uses: actions/setup-python@vl
with:

python-version:

- name: Install dependencies

run: |

pip install aws-sam-cli && sudo apt update && sudo apt install build-essential

name: Configure AWS credentials

uses: aws-actions/confipure-aws-credentials@vl
with:

aws-access-key-id: ${{ secrets.AWS ACCESS KEY }}
aws-secret-access-key: ${{ secrets.AWS SECRET _KEY }}

aws-region: us-east-1

- name: Build to Dev
run: |

make buildlLambda
sam package --template-file template.yaml --output-template-file packaged.yaml --s3

sam deploy --template-file packaged.yaml --stack-name sam-chefconnect-dev --capabil

Environments

Repository secrets
Secrets

Pages

Moderation settings

Deploy to Dev

() Summary

onds a

SEC

.

L]
Lt}
—
—
m
' [
[F]
s [
=
E
=}
. i
- .
=}
==
m
s E
] m
m s
mi
=

— 1
a
i L] 1
I a8 o
L I L
i
=i
=)
t
.
=)
EL
[]
=

L |

[ex]

[y}
LM

) Deploy to Prod

g
\\.{.-'

']
L}

(AB)USE CASES

® |ntroduce malicious code into dev branch

= Compromise the pipeline itself
= Jenkins boxes are ripe
m Poison automated check tooling
m Poison pipeline configuration file
® |njection attacks are fair game!
= Steal pipeline credentials (the ones used for performing deployments)

= Steal pipeline secrets

= Compromise the pipeline infrastructure

® Gain access to underlyingVMs, k8s nodes, etc.

® Node isolation can help mitigate this

m Poison container repository (if used)

QUESTIONS?

® Feel free to ping me in Discord in the meantime

m (@atticuss

) i

INFRASTRUCTURE AUTOMATION

B4 @muteki FY| ShellCon staff -- the cert for cfp.shellcon.io is expired 0
0y

=% Omg, why does perfectly good automation have to fail?! @@

S 1

EVAN = |ead Scientist @ Security Risk Advisors (sra.io)
@ZXXE FO RMYSH I RT = Focus on offensive security operations

“INFRASTRUCTURE AS CODE” (IAC)

= Store infrastructure and configuration as “code”

= Benefits
Centralization Version control Standardization

Auditability Portability™

TERRAFORM

= Popular IAC tool

= Custom language (Hashicorp Configuration Language / “HCL”)
= “Data sources” and “Resource”

" Module system

= State management

= Security applications .

e el g' Terraform

EXAMPLE: GENERATE RSA KEY + IMPORT

Generating a random key for the project

resource "tls private key" "rsakey" {
algorithm = "RSA"
rsa_bits = 40896

I

Import key into AWS

resource "aws key pair" "awskey" {

key name = "${var.project}-key"
public key = tls private key.rsakey.public key openssh

EXAMPLE: GENERATE RSA KEY + IMPORT

Generating a random key for the project
resource "tls private key" "rsakey"|{

algorithm = "RSA"
rsa_bits = 4896

Import key into AWS

resource "aws key pair

m 11

awskey" 1
key name = "${var.project}-key"
public key = tls private key.rsakey.public key openssh

EXAMPLE: GENERATE RSA KEY + IMPORT

Generating a random key for the project
resource "tls private key" "rsakey" {

algorithm = "RSA"

rsa_bits = 4096 terraform.tfvars

project = demo

Import key into AWS

resource "aws_key pair" "awskey" {

key name =Q"%{var.project}-key"
public key ey.rsakey.

vars.tf
variable "project" {
type = string
description = "Project prefix for assets”
validation {
condition = can(regex(""[a-zA-ZB-9\\-]+%", var.project))
error_message = "Project name can only consist of alphanumerics and dashes.™

[

EXAMPLE: GENERATE RSA KEY + IMPORT

Generating a random key for the project
resource "tls private key" "rsgkey" {

algorithm

- — A
rsa_bits = I resource reference I

I dependency I

resource "aws_key pal

" g

key name = "§lvz

public key = terraform docs |

Attributes Reference

The following attributes are exported:

e algorithm - The algorithm that was selected for the key.
® private_key_pem - The private key data in PEM format.
* public_key pem - The public key data in PEM format.

® public_key openssh - The public key data in OpenSSH authorized_keys format, if the
selected private key format is compatible. All RSA keys are supported, and ECDSA keys
with curves "P256", "P384" and "P521" are supported. This attribute is empty if an

incompatible ECDSA curve is selected.

EXAMPLE: GENERATE RSA KEY + IMPORT

terraform.tf

r

Generating a random key for the project terraform {
resource "tls private key" "rsakey" { required_providers {

algorithm = "RSA" aws = {

source = "hashicorp/aws"

rsa _bits = 4896

from AWS module I terraform docs
Resource: aws_key_pair

Import

resource "awskey" {

Provides an EC2 key pair resource. A key pair is used to control login access to EC2 instances.

I
"aws _key pair"

key name = "${var.project}-key"
public key = tls private key.rsakey.public key ope

Currently this resource requires an existing user-supplied key pair. This key pair's public key

will be registered with AWS to allow logging-in to EC2 instances.

When impaorting an existing key pair the public key material may be in any format supported

} by AWS. Supported formats (per the AWS documentation) are:

e OpenSSH public key format (the format in ~/.ssh/authorized_keys)
* Base64 encoded DER format

e SSH public key file format as specified in RFC4716

SHIFTING LEFT

= Premise: catch security issues prior to deployment

= Method: deploy infrastructure changes as code; catch issues by evaluating
infrastructure code

m Example: https://blog.christophetd.fr/shifting-cloud-security-left-scanning-
infrastructure-as-code-for-security-issues/

https://blog.christophetd.fr/shifting-cloud-security-left-scanning-infrastructure-as-code-for-security-issues/

SHIFTING LEFT
SAMPLE WORKFLOW

Commit Change

Source/Plan Checks

Deploy to test

Approval

Deploy to prod

SHIFTING LEFT EXAMPLE: EXPOSED SSH

= Manage AWS security groups via IAC (Terraform)
= Spot below issue via CI/CD pre-deployment check (e.g. Checkov)

= Prevent deploy until change passes

resource "aws security group" "firewall sg" { resource "aws security group" "firewall sg" {
name = "firewall sg" name = "firewall sg"
ingress { ingress {
description = "SSH" description = "SSH"
from port = 22 from port = 22
to_port = 22 to p;rt = 22
protocol j::r;::t:-zl = "tcp"
cidr_blocks cidr blocks = ["1.2.3.4/32"]

AREAS FOR ABUSE

® Terraform is code execution

= Main concern
® how its handled in Cl
= who can access ClI

®= who can write to source

= Secrets in source

= Use secret vault

SECRETS
MANAGEMENT = Secrets in state files

= Strong access controls on remote

state

I terraform docs I_

e Terraform Cloud always encrypts state at rest and protects it with TLS in transit. Terraform Cloud also
knows the identity of the user requesting state and maintains a history of state changes. This can be used

to control access and track activity. Terraform Enterprise also supports detailed audit logging.

DEPENDENCY
MANAGEMENT

Code exec, exfiltration

Trusted modules/providers
Explicit modules directory

Dependency pinning

TERRAFORM
FEATURES

Local exec

External

Be wary

Avoid influenceable input in command

= Treat plan as apply

m https://alex.kaskaso.li/post/terraform
-plan-rce

TERRAFORM PLAN

= Explicit modules directory

https://alex.kaskaso.li/post/terraform-plan-rce

QUESTIONS?

