
PIPELINES && SERVERLESS && AUTOMATION, OH MY!

AN INTRO TO THE DEV SIDE OF SECURITY

Cassandra Young

Jonn Callahan

Evan Perotti



APIS, SERVERLESS & MICROSERVICES



CASSANDRA YOUNG 

(AKA MUTEKI)

 Senior Scientist (R&I - Cloud Security) 
@ Security Risk Advisors

 Grad Student in Computer Science
@ University of Pennsylvania

 Blue Team Village Organizer

 Lives for international travel, scuba diving, 
woodworking, jigsaw puzzles and baking

Cassandra Young (she/her)

Twitter: @muteki_rtw

GitHub: github.com/muteki-apps



API DEFINITION

 TL;DR: provides standardized, programmatic method of interaction between 

backend logic / software and external services

 Layer of abstraction to simplify interaction with a service

 Common Functionality: GET, PUT, POST, DELETE

 Implementation on the backend varies widely depending on the service



API USE

 Connect to APIs w/ HTTP requests, using any

programming language

 Examples: request headers w/ auth, JSON body, 

Request & Response Headers

 Anatomy of a REST API request:

 Endpoint – URL specifying the data you’re 

interacting with

 Method – how you’re interacting with it

 Headers – metadata include with request & 

response, can include auth

 Data/Payload – if creating/updating, what info to 

add/change (usually JSON formatted)



API SECURITY CONSIDERATIONS

Risk

 String injection

 Unauthorized data access (ex. IDOR)

 D/DoS, Man in the Middle attacks, complex attacks

Mitigation

 Input validation

 Authentication/authorization, data access controls

 Web Application Firewall, TLS, rate limiting

Resources:

ShellCon talk @ 14:30 on API Security!

API Hacking talk: https://www.youtube.com/watch?v=qqmyAxfGV9c

Use Postman to poke at APIs: https://www.postman.com/

https://shellcon.io/talks/2021/api-security/
https://www.youtube.com/watch?v=qqmyAxfGV9c
https://www.postman.com/


SERVERLESS

 Execution model abstracting away infrastructure

 Code-focused, obfuscating OS & dependencies

 Simplified development process

 Event-driven, primarily accessed via APIs

 Stateless, no persistent storage



SERVERLESS FUNCTION EXAMPLE

 Supported library installs done for the developer

 JSON-formatted event is the input to the function

 Context object provides info about the runtime env 

and other metadata

 Program logic up to developer

 Function will return JSON-formatted response to 

caller



SERVERLESS FUNCTION 
EXAMPLE

 Invoking one AWS Lambda 

from another via internal API

 AWS boto3 library helps 

interface with the API

 Other Lambda must have 

policy that allows it to be 

invoked



SERVERLESS FUNCTION EXAMPLE: IAM PERMISSIONS ON LAMBDA

 Example of scoped policy

 Restricting AWS Lambda 

permissions reduces attack 

surface

 IAM/permissions is the 

serverless security perimeter!



SERVERLESS FUNCTION

COMPROMISE EXAMPLE

String injection

Access to Environment

Enumerate Lambda’s Roles/Policies

Privilege Escalation / Resource Access

IAM / Permissions = Security Perimeter

Image credit: https://research.cs.wisc.edu/mist/SoftwareSecurityCourse/Chapters/3_8_3-Code-Injections.pdf



MICROSERVICES

 Microservices Architecture is a 

design pattern 

 Collection of loosely-coupled 

components

 Commonly implemented using 

containers or serverless 

functions

 APIs connect components

 Development and upgrade 

focus shifted to component 

level



PIPELINES



JONN CALLAHAN (ATTICUSS)

 Lead Scientist / Security Risk Advisors

 Python is great, as is Golang

 Distributed computing is fascinating

 Metalhead \m/







TYPICAL FLOW CONTROLS

 Implemented against pull requests

 Manual approvement gateways

 Automated tests

 Branch protections

 Limits or entirely blocks ability to push directly to sensitive branches

 Limit the files that can be modified by a pull requests

 Pipeline protections

 Limit who can modify the pipeline configuration

 Limit who can modify automated test code





CONCEPTUALLY

 Covers the operational gap between development and deployment

 Uses automation to reduce friction

 Takes freshly written code and moves it through higher environments until its released in production

 git branching and pull requests



PIPELINE DEPLOYMENT DIAGRAM



CONCRETELY (MODERN VARIANTS)

 Utilize configuration files for controlling behavior (usually YAML)

 Trigger on various modifications to a git repo, such as a push or new pull request

 Pipeline triggers contain n jobs for doing Things™, e.g.:

 Deploy to production environment

 Each job runs inside a container (sequential or parallel)

 Each job contains n discrete tasks/steps/etc, e.g.:

 sam deploy

 Containers are pretty ubiquitous at this point

 Allows for isolation and flexibility



FOR THOSE PLAYING ALONG AT HOME

 https://github.com/atticuss/ChefConnect

 Yes, the code is horrible – was my first Go app and I’ve learned a lot since then

 Github Actions are configured via /.github/workflows/foo.yaml

https://github.com/atticuss/ChefConnect














(AB)USE CASES

 Introduce malicious code into dev branch

 Compromise the pipeline itself

 Jenkins boxes are ripe

 Poison automated check tooling

 Poison pipeline configuration file

 Injection attacks are fair game!

 Steal pipeline credentials (the ones used for performing deployments)

 Steal pipeline secrets

 Compromise the pipeline infrastructure

 Gain access to underlying VMs, k8s nodes, etc.

 Node isolation can help mitigate this

 Poison container repository (if used)



QUESTIONS?

 Feel free to ping me in Discord in the meantime

 @atticuss



INFRASTRUCTURE AUTOMATION



EVAN

@2XXEFORMYSHIRT

 Lead Scientist @ Security Risk Advisors (sra.io)

 Focus on offensive security operations



“INFRASTRUCTURE AS CODE” (IAC)

 Store infrastructure and configuration as “code”

 Benefits

Centralization Version control Standardization

Auditability Portability*



TERRAFORM

 Popular IAC tool

 Custom language (Hashicorp Configuration Language / “HCL”)

 “Data sources” and “Resource”

 Module system

 State management

 Security applications

 “Shifting left”



EXAMPLE: GENERATE RSA KEY + IMPORT



EXAMPLE: GENERATE RSA KEY + IMPORT



EXAMPLE: GENERATE RSA KEY + IMPORT

main.tf

vars.tf

terraform.tfvars

value

definition



EXAMPLE: GENERATE RSA KEY + IMPORT

resource reference

dependency

terraform docs



EXAMPLE: GENERATE RSA KEY + IMPORT

from AWS module terraform docs

terraform.tf



SHIFTING LEFT

 Premise: catch security issues prior to deployment

 Method: deploy infrastructure changes as code; catch issues by evaluating 

infrastructure code

 Example: https://blog.christophetd.fr/shifting-cloud-security-left-scanning-

infrastructure-as-code-for-security-issues/

https://blog.christophetd.fr/shifting-cloud-security-left-scanning-infrastructure-as-code-for-security-issues/


SHIFTING LEFT 

SAMPLE WORKFLOW

Commit Change

Source/Plan Checks

Deploy to test

Approval

Deploy to prod



SHIFTING LEFT EXAMPLE: EXPOSED SSH

 Manage AWS security groups via IAC (Terraform)

 Spot below issue via CI/CD pre-deployment check (e.g. Checkov)

 Prevent deploy until change passes



AREAS FOR ABUSE

 Terraform is code execution

 Main concern

 how its handled in CI

 who can access CI

 who can write to source



SECRETS 

MANAGEMENT

 Secrets in source

 Use secret vault

 Secrets in state files

 Strong access controls on remote 

state

terraform docs



DEPENDENCY 

MANAGEMENT

 Code exec, exfiltration

 Trusted modules/providers

 Explicit modules directory

 Dependency pinning



TERRAFORM 

FEATURES

 Local exec

 External

 Be wary

 Avoid influenceable input in command



TERRAFORM PLAN

 Treat plan as apply

 https://alex.kaskaso.li/post/terraform

-plan-rce

 Explicit modules directory

https://alex.kaskaso.li/post/terraform-plan-rce


QUESTIONS?


