
PIPELINES && SERVERLESS && AUTOMATION, OH MY!

AN INTRO TO THE DEV SIDE OF SECURITY

Cassandra Young

Jonn Callahan

Evan Perotti



APIS, SERVERLESS & MICROSERVICES



CASSANDRA YOUNG 

(AKA MUTEKI)

 Senior Scientist (R&I - Cloud Security) 
@ Security Risk Advisors

 Grad Student in Computer Science
@ University of Pennsylvania

 Blue Team Village Organizer

 Lives for international travel, scuba diving, 
woodworking, jigsaw puzzles and baking

Cassandra Young (she/her)

Twitter: @muteki_rtw

GitHub: github.com/muteki-apps



API DEFINITION

 TL;DR: provides standardized, programmatic method of interaction between 

backend logic / software and external services

 Layer of abstraction to simplify interaction with a service

 Common Functionality: GET, PUT, POST, DELETE

 Implementation on the backend varies widely depending on the service



API USE

 Connect to APIs w/ HTTP requests, using any

programming language

 Examples: request headers w/ auth, JSON body, 

Request & Response Headers

 Anatomy of a REST API request:

 Endpoint – URL specifying the data you’re 

interacting with

 Method – how you’re interacting with it

 Headers – metadata include with request & 

response, can include auth

 Data/Payload – if creating/updating, what info to 

add/change (usually JSON formatted)



API SECURITY CONSIDERATIONS

Risk

 String injection

 Unauthorized data access (ex. IDOR)

 D/DoS, Man in the Middle attacks, complex attacks

Mitigation

 Input validation

 Authentication/authorization, data access controls

 Web Application Firewall, TLS, rate limiting

Resources:

ShellCon talk @ 14:30 on API Security!

API Hacking talk: https://www.youtube.com/watch?v=qqmyAxfGV9c

Use Postman to poke at APIs: https://www.postman.com/

https://shellcon.io/talks/2021/api-security/
https://www.youtube.com/watch?v=qqmyAxfGV9c
https://www.postman.com/


SERVERLESS

 Execution model abstracting away infrastructure

 Code-focused, obfuscating OS & dependencies

 Simplified development process

 Event-driven, primarily accessed via APIs

 Stateless, no persistent storage



SERVERLESS FUNCTION EXAMPLE

 Supported library installs done for the developer

 JSON-formatted event is the input to the function

 Context object provides info about the runtime env 

and other metadata

 Program logic up to developer

 Function will return JSON-formatted response to 

caller



SERVERLESS FUNCTION 
EXAMPLE

 Invoking one AWS Lambda 

from another via internal API

 AWS boto3 library helps 

interface with the API

 Other Lambda must have 

policy that allows it to be 

invoked



SERVERLESS FUNCTION EXAMPLE: IAM PERMISSIONS ON LAMBDA

 Example of scoped policy

 Restricting AWS Lambda 

permissions reduces attack 

surface

 IAM/permissions is the 

serverless security perimeter!



SERVERLESS FUNCTION

COMPROMISE EXAMPLE

String injection

Access to Environment

Enumerate Lambda’s Roles/Policies

Privilege Escalation / Resource Access

IAM / Permissions = Security Perimeter

Image credit: https://research.cs.wisc.edu/mist/SoftwareSecurityCourse/Chapters/3_8_3-Code-Injections.pdf



MICROSERVICES

 Microservices Architecture is a 

design pattern 

 Collection of loosely-coupled 

components

 Commonly implemented using 

containers or serverless 

functions

 APIs connect components

 Development and upgrade 

focus shifted to component 

level



PIPELINES



JONN CALLAHAN (ATTICUSS)

 Lead Scientist / Security Risk Advisors

 Python is great, as is Golang

 Distributed computing is fascinating

 Metalhead \m/







TYPICAL FLOW CONTROLS

 Implemented against pull requests

 Manual approvement gateways

 Automated tests

 Branch protections

 Limits or entirely blocks ability to push directly to sensitive branches

 Limit the files that can be modified by a pull requests

 Pipeline protections

 Limit who can modify the pipeline configuration

 Limit who can modify automated test code





CONCEPTUALLY

 Covers the operational gap between development and deployment

 Uses automation to reduce friction

 Takes freshly written code and moves it through higher environments until its released in production

 git branching and pull requests



PIPELINE DEPLOYMENT DIAGRAM



CONCRETELY (MODERN VARIANTS)

 Utilize configuration files for controlling behavior (usually YAML)

 Trigger on various modifications to a git repo, such as a push or new pull request

 Pipeline triggers contain n jobs for doing Things™, e.g.:

 Deploy to production environment

 Each job runs inside a container (sequential or parallel)

 Each job contains n discrete tasks/steps/etc, e.g.:

 sam deploy

 Containers are pretty ubiquitous at this point

 Allows for isolation and flexibility



FOR THOSE PLAYING ALONG AT HOME

 https://github.com/atticuss/ChefConnect

 Yes, the code is horrible – was my first Go app and I’ve learned a lot since then

 Github Actions are configured via /.github/workflows/foo.yaml

https://github.com/atticuss/ChefConnect














(AB)USE CASES

 Introduce malicious code into dev branch

 Compromise the pipeline itself

 Jenkins boxes are ripe

 Poison automated check tooling

 Poison pipeline configuration file

 Injection attacks are fair game!

 Steal pipeline credentials (the ones used for performing deployments)

 Steal pipeline secrets

 Compromise the pipeline infrastructure

 Gain access to underlying VMs, k8s nodes, etc.

 Node isolation can help mitigate this

 Poison container repository (if used)



QUESTIONS?

 Feel free to ping me in Discord in the meantime

 @atticuss



INFRASTRUCTURE AUTOMATION



EVAN

@2XXEFORMYSHIRT

 Lead Scientist @ Security Risk Advisors (sra.io)

 Focus on offensive security operations



“INFRASTRUCTURE AS CODE” (IAC)

 Store infrastructure and configuration as “code”

 Benefits

Centralization Version control Standardization

Auditability Portability*



TERRAFORM

 Popular IAC tool

 Custom language (Hashicorp Configuration Language / “HCL”)

 “Data sources” and “Resource”

 Module system

 State management

 Security applications

 “Shifting left”



EXAMPLE: GENERATE RSA KEY + IMPORT



EXAMPLE: GENERATE RSA KEY + IMPORT



EXAMPLE: GENERATE RSA KEY + IMPORT

main.tf

vars.tf

terraform.tfvars

value

definition



EXAMPLE: GENERATE RSA KEY + IMPORT

resource reference

dependency

terraform docs



EXAMPLE: GENERATE RSA KEY + IMPORT

from AWS module terraform docs

terraform.tf



SHIFTING LEFT

 Premise: catch security issues prior to deployment

 Method: deploy infrastructure changes as code; catch issues by evaluating 

infrastructure code

 Example: https://blog.christophetd.fr/shifting-cloud-security-left-scanning-

infrastructure-as-code-for-security-issues/

https://blog.christophetd.fr/shifting-cloud-security-left-scanning-infrastructure-as-code-for-security-issues/


SHIFTING LEFT 

SAMPLE WORKFLOW

Commit Change

Source/Plan Checks

Deploy to test

Approval

Deploy to prod



SHIFTING LEFT EXAMPLE: EXPOSED SSH

 Manage AWS security groups via IAC (Terraform)

 Spot below issue via CI/CD pre-deployment check (e.g. Checkov)

 Prevent deploy until change passes



AREAS FOR ABUSE

 Terraform is code execution

 Main concern

 how its handled in CI

 who can access CI

 who can write to source



SECRETS 

MANAGEMENT

 Secrets in source

 Use secret vault

 Secrets in state files

 Strong access controls on remote 

state

terraform docs



DEPENDENCY 

MANAGEMENT

 Code exec, exfiltration

 Trusted modules/providers

 Explicit modules directory

 Dependency pinning



TERRAFORM 

FEATURES

 Local exec

 External

 Be wary

 Avoid influenceable input in command



TERRAFORM PLAN

 Treat plan as apply

 https://alex.kaskaso.li/post/terraform

-plan-rce

 Explicit modules directory

https://alex.kaskaso.li/post/terraform-plan-rce


QUESTIONS?


